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The present work describes novel numerical formulations based on integral equations for calculating
steady-state distributions of concentration, potential and current density in two-dimensional multi-
ple-ion electrochemical systems involving diffusion, convection and migration effects. For simplicity,
the electrolyte solutions are considered to be dilute and at a constant temperature. Numerical pro-
cedures using the boundary element method (BEM) have been developed specifically for the problem,
and are briefly described in the text. The accuracy and efficiency of these procedures are assessed with
several tests, involving binary and three-ion systems, linear and non-linear boundary conditions, and
problems that are either diffusion- or convection-dominated, or both.
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List of symbols

cx  concentration of species k (mol m~3)

Dy diffusion coefficient of species & (m*s™!)

F  Faraday constant (A smol™")

i exchange current density (A m~2)

J  current density (A m™2)

Jim limiting current density (A m‘z)

Ni  flux density of species k (molm=2s~1)

Pe  Péclet number

time (s)

normal derivative of concentration (molm™*)
mechanical mobility of species k (m? mol J71s7h
electrical potential (V)

electrical field (Vm™")

velocity of the solvent (ms~!)

voltage (V)

gas constant (Jmol ' K1)

absolute temperature (K)
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1. Introduction

Computational electrochemistry is a rapidly devel-
oping field centred on three basic theories describing
the mass and ion transport processes in electro-
chemical systems: potential theory, Nernst layer
theory and Nernst—Planck theory [1]. The potential
theory, being the simplest from the mathematical
point of view, is widely applied in theoretical in-
vestigations of ionic transport and current distribu-
tion. Much work has been done in recent years in the
analysis of different electrochemical processes with
alternative analytical and numerical methods like the
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x,y Cartesian coordinates (m)
zx  charge number of species k

Greek symbols

transfer coefficient

source point

electrolyte density (kgm™3)
electrolyte viscosity (kgm~'s™!)
field point

R T T v R

Subscripts

a  anode

b  boundary point

c cathode, concentration
fd  first derivative

1 internal point

k  species k

sd second derivative

v electrical potential

more traditional finite difference method (FDM),
the finite element method (FEM) and, more recently,
the boundary element method (BEM) [2-7].

To assure a uniform conductivity, the presence of
inert supporting electrolyte is necessary. But there is a
notable absence of inert ions in redox membranes
used as modifiers of electron conductivity electrodes,
in solid and liquid ion exchange membranes, and in
mixed conductor sandwich cells between metals or
between bathing electrolytes, or one of each. Like-
wise, thin layer electrolytes between metals need not
contain supporting electrolyte. In all these cases,
there is an enhancement of the steady-state current
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and potential theory is no longer valid [8]. A more
complicated model, based on Nernst layer theory, is
then actively used by many researchers [9-13].

For modelling narrow gap cells, determining the
current distribution on small features within the dif-
fusion layer or, in general, for cells with concentra-
tion gradients extending over a significant portion of
the cell region, the Nernst layer approximation is no
longer valid. In this area, when convective effects are
not negligible, which often occurs in practice, the
diffusion, convection and migration effects must be
simultaneously considered. So, the Nernst-Planck
transport equation has to be taken into account.
Although studies of current distribution have reached
a very high level with the aid of powerful computers,
solutions of the Nernst-Planck model hardly
appeared. So far, only Georgiadou and Alkire [14]
published results based on this model, using the finite
difference method.

The main objective of the present work is to apply
BEM formulations to solve the Nernst—Planck model
for predicting concentration, current and potential
distributions in electrochemical systems. The main
theoretical aspects and numerical algorithms of the
BEM model have already been presented in detail
elsewhere [15], and will only be briefly reviewed here;
this paper concentrates on more practical applica-
tions to parallel electrochemical cells.

This research forms part of a joint European
project on the development and evaluation of meth-
ods for prediction of current density distribution in
electrochemical cells, under the sponsorship of the
Brite—Euram programme. The project involves the
development of two different numerical formulations,
one being the BEM and the other the Multi-Dimen-
sional Upwind Method (MDUM), the theoretical
basis of which has been reported elsewhere [13].
Comparison of results obtained with these two dis-
tinct approaches will be presented here.

2. Governing equations

For a dilute solution in a unionized solvent at con-
stant pressure and temperature, the flux density of
each ionic species k is given by [1]

Nk = —uziFe, VU — Dy NVey + v (l)

The symbols are as stated at the outset of this paper.
The three terms on the right-hand side of Equation 1
describe the effects of migration, diffusion and con-
vection, respectively.

The total charge per mole ion is its charge number
multiplied by the Faraday constant, z;F, and the
current density is hence the flux of the ion multiplied
by ziF. For all the species, we have

J=F) zN, (2)

k
The material balance for a minor component in an
electrolyte can be expressed by
(9ck

E:_V'Nk"i_Rk (3)

with Jc; /0t being the accumulation of species
k,V -N; the difference between the input and the
output and R; the production rate of ion k£ due to
homogeneous chemical reactions in the bulk of the
solution. In electrochemical systems, reactions are
frequently restricted to electrode surfaces, in which
case R; can be considered as zero.

Equations 1 to 3 (with R, = 0) are equivalent to
the following set of equations:
8ck

E +v- Ve, = V- (ukaVU) + V- (Dchk) (4)

V- {—F2 ZZ%MkaVU —FZZkaVCk} =0 (5)
k k

where Equation 5 was obtained by considering con-
servation of charge and the condition of electro-

neutrality
ZZka = 0 (6)
k

The above set of equations describes the transport of
mass and charge in dilute electrochemical solutions.
Even in the simple case of an infinite dilute solution, a
complex set of coupled partial differential equations
has to be dealt with.

In what follows, only the case of dilute solutions is
considered, hence the concentration of species does
not affect the velocity field. Thus, the fluid mechanics
can be studied separately from the electrochemical
analysis, which means that the convective velocity is
known in the present case and Equations 4 to 6 can
be solved for the unknown variables U and c¢;.

3. Numerical formulation
3.1. Mathematical model
For two-dimensional steady-state problems, assum-
ing that reactions are restricted to the electrodes and

that the coefficients u;,z; and D; are all constant,
Equations 4 and 5 can be expressed in the form:

oU \ Oc
Dkvzck — (Ux — szuk§> 6—;
BU 8ck 2
— vy, — P — | — = —(F
(Uy Zr U 8)/) ay ( Zkukv U)Ck (7)

Oocy \ OU
2 2 2 k
Zyugey | VU + ( Zy Uy —) —
(Satne o (S22 %
3Ck ou 1
2 _ 2
! <zkzzkuk 3y> ay _F;Zkav @ ®

For the purpose of deriving a numerical algorithm
employing the boundary element method, the veloc-
ity field is initially divided into an average and a
perturbation as follows:

Uy(xvy) =7, +Py(x7y)

where v, and 7, represent the mean (constant)
velocity, and Py, P, represent the deviation from the

Ux(xay) =7y "’Px(xvy)
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mean at each point. Equation 7 can then be rewritten
in the form:

Jdc Jdc Oc Oocy
2 _ dex  _ Oy k
Dkv Ci — Uxa— Uya—yzpcxka-f—Pcyk 8 +CXMC](
9)
with
oU
Py (x,y) = P — Kka
ou
Pcyk(x,y) :Py _Kka_y
Coy (x,y) = —K VU
Kk = szuk

Similarly, Equation 8 is rewritten in the form:

oU oU oU ou
277 = YY
VU Uy Ox Vyy =~ 9 =1 ux 9 1 uy

3y + U,y

(10)

where the terms Y, zZZuxOcy/Ox and ", z2ugdey /dy in
Equation 9 can be interpreted as a kind of convective
velocity, and hence also divided into an average and a
perturbation:

UMX(xay) = BWC +Pux(x7y)
Uuy(xvy) = Euy +Puy(xay)
with

O (,y) = — (Zziuk %)/(Z z,%ukck>
k k
Uy (%, ¥) = — (;Ziuk %if)/(zk: Zi“ké’k)
Uy(x,y) = — (szDkV%k)/(FZz,z{ukck)
k k

It is important to notice that, while the terms v, and
7, in Equation 9 correspond to a known velocity field,
the terms v, and 7,, in Equation 10 are dependent on
the unknown concentrations c;.

The iterative scheme of solution of the system
starts by fixing an initial variation for the electrical
potential U, and solving a set of Equations 9 for
K — 1 concentrations using the BEM. This solution
provides values of ¢; and dc;/On along the boundary.
With these values it is then possible to directly
calculate values of ¢; at internal points, first deriva-
tives of ¢; at boundary and internal points, and sec-
ond derivatives of ¢; at internal points. The values of
concentration and derivatives of the last ion are
obtained using Equation 6 and its derivatives.

Next, Equation 10 is solved for U using the pre-
viously calculated distributions of ¢; and their
derivatives to evaluate vy,v, and U,,. Initially, a
boundary element scheme is used to calculate U and
OU/On along the boundary. Thus, values of
0U/0x,0U /0y and V?U at internal points can be
evaluated explicitly. These are then used to give a
better estimate of the concentrations ¢; by solving

Equation 9 again. This procedure is repeated until
convergence is achieved for all concentrations cj
and U.

3.2. BEM formulation for multiple-ion electrochemical
systems

The fundamental solution of the two-dimensional
steady-state diffusion-convection equation with con-
stant velocity field

Oc dc
DV -0, — —7,— =
T oy 0

1 [v|r
27D°¢ ZDKO( 2 )
where ¥ is the velocity vector, & and y represent source
and field points, respectively, » is the modulus of r,
the distance vector between ¢ and y, and K is the
Bessel function of second kind of zero order.

By employing the above fundamental solution and
Green’s identities, when source points are inside the
domain, Equation 9 can be transformed into the
following integral equation

D/
D / sl any (AT () + / ¢ (&, 15 (2)e(1)dT ()

_ \ dc(x)
= —/Qc (&%) o,

is of the form [15]

(&) =

(%)

dc(x)
aJ’x

ch(X) + Pcy(X)

+ Coy(1)e(x) | dQ(x)

(11)

where 7, = V- n, n is the unit outward normal vector.
For simplification, we will denote by b =P,
(0c/0x) + Pry(0c/0y) + Cyyc the term within brackets
on the right-hand side of Equation 11.

It is important to notice that only the fundamental
solution depends on the position of the source point;
all other terms are only related to field points. Based
on this, it is possible to take derivatives with respect
to coordinates of the source point directly on the
above Equation 15.

The first derivative of function ¢ with respect to
coordinate x of the source point is thus obtained by
differentiating Equation 11:

30(’) o (&,7) .
D/r o q(x)dl
d%¢ * oc*
+D/ on, ng ndl + l_ca(iiwvn(l)c(x)dr
X
_ dc* (&, 7>b(,()dQ 1)

o Ox¢

The first derivative of function ¢ with respect to co-
ordinate y of the source point is given, analogously:



1336 Z. H. QIU, L. C. WROBEL AND H. POWER
ac*( 4)dr *c* (€, X 4)dr Thus, multiplying Equation 16 by C,,, Equation 17
-D / 8yg +D / an,ﬁyi 7) by ow, Equgtlon 18 by P, and adding the resulting

8c oy ac*(&, 1 equations gives
+ ( ) Un(0)e(r)dl = — #b(}f)dg (13) IB. +H.C. —G — B. 19
r 8 5y< ¢+ Heilp — c1Qc c1 c ( )

A similar procedure can be undertaken for obtaining
integral equations for the second derivatives,
although care must be taken when differentiating the
domain integral because of the strong singularity of
the kernel [15].

To obtain a boundary integral representation
analogous to Equation 11, the limit is taken when the
source point ¢ approaches the boundary I' in Equa-
tion 11 producing the expression:

#(&)e(8) — D / ¢ (& 09T ()

w0 [ EZE ear )+ [ ¢ G meloart)

__ / (&, 7)b()dQ(7)
Q

where «(&) is a function of the internal angle sub-
tended at point &. In particular, « = 1/2 on a smooth
boundary.

Equations for the derivatives of ¢ with respect to
the coordinates of the source point, for a source point
on the boundary, can also be obtained by using
similar limiting processes. Again, care must be taken
in evaluating the jumps that appear in these limiting
processes because of the strong singularity of the
kernels; thus, the corresponding surface integrals
have to be evaluated in the sense of Cauchy principal
value and Hadamard finite parts [15].

(14)

3.3. Numerical solution

For the numerical solution by the BEM, the boun-
dary is discretized into elements and the domain into
cells [16]. The boundary integral Equation 14 for the
concentration is applied at each boundary node using
a collocation technique, generating a system of
equations of the form

Gchc = - chc (15)

In the above system, Hy, and G, are standard in-
fluence matrices, Ep is a matrix resulting from the
domain integral, Cy is the vector of boundary con-
centrations (for a specific ion), Q. is a vector con-
taining the normal derivatives dc/0n, and B, is a
vector containing values of b, at each internal node.

To ecliminate the domain variable 5. from the
system of Equations 15, we start by writing the fol-
lowing equations for the concentration and its first
derivatives at internal points, which results from the
application of Equations 11-13

HpCy —

Ci + HoCy — GoQc — —E B (16)
oC;
8xl xfdCb — Gextd Oc = —EcxfaBe (17)
0GC;
l y1dCo — GeyraOc = —EcyaBe (18)

dy ¢

Here, I is the unit matrix and
He = Cy He + PexHexga + PoyHeypa
Gei = CyyGe + PexGexid + PeyGeyia
Eg = CyEc + PxEcyid + PeyEeytd

Eliminating the variable » from Equations 15 and
19, another matrix system is constructed,

[Heo — Ecy(Ei + 1) Hai] Co
= [Gcb - Ecb(Eci +[)_1Gci] Qc

which only relates boundary values. With it, all the
boundary unknowns can be evaluated. This step is
completed by solving a system of equations. Once all
nodal boundary values are obtained, the system of
Equations 19 is also solved to provide the domain
terms b.. After this, the values of concentration at
internal points, and derivatives at boundary and
internal points, can be calculated explicitly by using
Equations 16-18 and the following [15]:

82

(20)

Ox a0 + chsdcb - cxsdQc = —EcxsaBe (21)
32

a a2 +Hcystb - cysdQc = CVSdB (22)
oG

a—b + HoxtaCo — GoxtaOc = —EmpaBe  (23)
oG

ayb + HyyiaCo — GiyfaQc = —EvyraBe  (24)

3.3.1. Solution for the electrical potential. The set of
matrix equations for calculating the electrical poten-
tial U is obtained following the same ideas as for the
concentration c¢. These matrices are of the form [15]:

Hub Ub ubQu = ubB (25)

oU;

(9)(1 uxfd Ub - GuxfdQu = 7Euxdeu (26)

oy,

a—yl + HytaUp — GuydOu = —EwraBu (27)
0*U;
Ox 21 + Huxsd Ub uxsdQu = uxsdB (28)
82
a a2 + Huysd Uy — uysdQu = _EuysdBu (29)
[Bu - ny + Hui Ub - GuiQu = _EuiBu (30)

In the above, vectors U, and Q, comprise the values

of the electrical potential and its normal derivative,

respectively, at boundary nodes; vectors U; and B,

comprise the values of U and the term b, respectively,

at internal points. The domain variable b for the

electrical potential equation is defined in the form
oU; oU;

by = Py—+ P,

ax Thwg, T U
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The final set of equations for the unknown values
of U and 9U/On on the boundary is obtained by
substituting the vector B, in Equation 25 by its ex-
pression in terms of Uy, and Q,, given by Equation 30.
The final result is of the form:

[Hup — Eup(Eui + 1) Hy] Uy
= [Gub - Eub(Eui + I>71Gui] Qu - Eub(Eui +[)71ny
(31)

where
Hyi = PycHuxig + PuyHuyfd

Gui = PixGuxfa + PuyGuyfd
Eyi = PicEud + PuyEuyfd

After solving system (31) and calculating the val-
ues of B, by solving system (30), it is possible to
calculate first and second derivatives at internal
points, explicitly, using Equations 26 to 29.

3.3.2. Iteration procedure. The iteration procedure is
carried out with the following steps:

(1) With an initial estimate of the electrical po-
tential distribution (which can be a null field)
calculate P, P, and C,,.

(i1)) Solve Equation 20 for the boundary values of
¢y and g. = Jcy,/On (subscript b means that the
source point is on the boundary).

(iii) Calculate the values of b, at internal points by
solving the system (19).

(iv) Calculate the values of Ocp/0x and ey /0y
using Equations 23 and 24.

(v) Calculate the values of ¢, Jci/0x, Oci/dy,
0%c;/0x* and 9*c;/dy* (subscript i means that
the source point is on the domain), using
Equations 16-18, 21 and 22.

(vi) Repeat steps 1 to 5 for the concentration of
ions 1 to K — 1.

(vii) Calculate the concentration of ion K, and its
derivatives, by enforcing the electroneutrality
condition.

(viii) Using the above values, calculate the values of
Uur, Uy and Uy, and solve the system of Equa-
tions 31 to provide a new distribution of Uy and
u-

(ix) Calculate the values of b, at internal points by
solving the system (30).

(x) Calculate the values of 9dU;/dx, OU;/dy,
0*U,/0x* and 0*U;/0y* using Equations 26-29.

(xi) Update the values of P, P, and C,, for each
ion, and go to step 2.

Convergence of the solution is verified for all the
concentrations and the electrical potential. Thus, it is
possible (and likely) that some of the variables will
converge faster than others. In this case, the iteration
loop proceeds until convergence of the remaining
variables is achieved.

In spite of the large number of matrix equations
involved in the iteration process, its efficiency is very
reasonable. This is because all the matrices depend

only on geometry, the diffusion coefficient (which is
constant) and the convection coefficients. For the
concentration Equation 9, it is recalled that the terms
v, and v, correspond to a known velocity field which
is constant throughout the iteration steps. However,
for the electrical potential Equation 10, the terms vy,
and v,, depend on c. The procedure adopted was to
maintain the mean values o, and #y, from the first
iteration constant throughout the process, and only
update the perturbation terms P, and P,,.

4. Applications

To assess the boundary element formulations pre-
sented here, simulations are now performed on par-
allel plate reactors with fully developed laminar
parabolic flows. Electrolytes with two or three ions
are considered such that binary solutions and solu-
tions with an excessive amount of supporting elec-
trolyte can be modelled.

4.1. Example 1

The first example is a simple theoretical problem in-
volving convection, diffusion and migration effects.
The electrolyte consists of three ions and ion 1 is
taken as reactive. A simple linear boundary condition
coupling the concentrations and electrical potential at
cathode and anode is imposed. All constants and
variables are given in dimensionless form, as follows:

F:uk:Dk:L

fork=1,2,3.

A sketch of the parallel plate reactor is shown in
Fig. 1. The parabolic velocity field is given by
vy = 500y(1 — y), v, =0. The following boundary
conditions are imposed:

21:2, 2221, 232—2

atx=0
0120.5 02:1 6’3:1 a—(/_O
on
atx =11
8017 . 6027 . 5037 . 8U7
a0 e G Y T
aty=0and 5<x<6
ouU 801
T Il
Clan-i-an 0.5
8U (9(32
2 om0
c3=c;+05¢
Y
1 2.6
R
current=1
0 56 I

Fig. 1. Sketch of reactor for test 1.
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ou —0.5

O (2c1 +2¢3+0.5¢)
aty=0andx <5 x>6

dey . Ocy 0 Ocs o O0U
= S Y =
aty=0and x=5.5
U=0
aty=1land 5<x<6
ou 8c1
2¢ci—+—=20.5
018n+8n
ou 802
“on " on = °
c3=c1+05¢
oU 0.5

E (201 +2¢3+0.5 Cz)
aty=landx<5;x>6
801 0- 802_0

om0 o O

oU

863
O T =

on 0

Numerical results obtained for the concentration
of ion 1 along the faces y = 0 and y = 1 are presented
in Figs 2 and 3, compared to those obtained using the
Multi-Dimensional Upwinding Method (MDUM)
[17]. The solutions are in excellent agreement al-
though the numerical methods of solution are totally
different. Very similar comparisons were obtained for
the concentrations of ions 2 and 3.

This problem, although geometrically simple,
presents a mild singularity at the leading edges of the
electrodes caused by a discontinuity in the current
density distribution, which is generally difficult to
treat using numerical methods. A small undershoot in
the concentration at the leading edge can be noted in
the BEM results of Fig. 2, while a small overshoot is
seen in Fig. 3. These are very small errors which can

0.58

0.56

0.54

0.52

0.50

Concentration c;

0.48 1 | L | |
0 2 4 6 8 10 12

Fig. 2. Variation of concentration ¢; along y = 1. BEM results
(——); MDUM results (— — -).

0.52

0.50

0.48

0.46

0.44

Concentration c¢;

0.42 | | | | 1

Fig. 3. Variation of concentration ¢; along y = 0. BEM results
(—); MDUM results (———).

only be appreciated because of the scales adopted in
the Figures.

To confirm the above statement, we notice that the
boundary conditions at the electrolytes are given as
Robin conditions for ¢ and ¢;, a Dirichlet condition
for ¢3 and a Neumann condition for the electrical
potential U; these should correspond to a constant
current density equal to one (the current density is
zero at all other faces). By substituting the results
obtained for the concentrations, their gradients and
the normal derivative of the potential into the general
expression (2) for calculating the current density, we
found an almost constant current density distribution
equal to 0.999 962, with a maximum value of 1.000 12
at the centre of the electrolyte.

The variation of the electrical potential along the
top and bottom faces can be seen in Figs 4 and 5,
showing again a very good agreement with the
MDUM solution.

0.10

Potential

0.08

0.06

Electrical

0.04 1 L | | 1

Fig. 4. Variation of potential U along y = 1. BEM results (——);
MDUM results (——-).
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0.08

U

0.06

0.04

Potential

0.02

Electrical

0.00 | 1 | | |
0 2 4 6 8 10 12

Fig. 5. Variation of potential U along y = 0. BEM results (—);
MDUM results (— — -).

4.2. Example 2

The second test is a problem of diffusion and migra-
tion in a binary electrolyte system; no convection is
involved in order that analytical solutions can be ob-
tained to compare with the numerical ones. It consists
of a parallel plate cell with metal dissolution at the
anode (x =0) and metal deposition at the cathode
(x = L), the geometry of which is shown in Fig. 6.

For both electrode reactions, the following Butler—
Volmer polarization equation is applied [1]:

in which « is the transfer coefficient.
The following values of constants and physical
properties are adopted:

it =i =001Acm™

Dy =D, =107 cm?s™!

Z] = 1 zy) = -1
L=1cm ¢y = 107" molem ™
V. =0.07r; oy = o = 0.5
R =28.314Jmol 'K™! T =25°C

. .
003 insulator
o
8 posent- ——
3
o 0 X

Fig. 6. Sketch of reactor for test 2.

The boundary conditions for this problem are:
atx=20
Cl =C
802 ou

—~=138.6cr—
on © on

oU  2.6846 ¢,
o mvexp
with
vexp = exp[19.47 (V. — U)| — exp[19.47 (U — ;)]

atx=1
cr=c
Oc oU
3_112 = 38602
oU  2.6846 ¢
= 7(01 T o) vexp
with

vexp = exp[19.47 (V, — U)] — exp[19.47 (U — V,)]
atx=0.5,y=0and y=0.3

¢y =c¢; =10"*molem™

U =D-0.0596
aty=0and y=0.3:
801_ .802_ . ({9U7
an =S =gy =0

The main difference between this test and the
previous one is that the boundary conditions for the
potential at the anode and cathode are nonlinear, and
the system of equations is thus solved iteratively using
a Newton—Raphson technique (see [18] for more de-
tails).

Numerical results for different voltages ¥, applied
at the anode are presented in Figs 7 and 8, and
compared to the exact solution given by [17]

0.20
0.16
0.12
P (d)
~
O
0.08 c)
(
0.04 |
L
a)
OOO | | | | |
0.0 0.2 0.4 0.6 08 1.0 1.2

x,/cm

Fig. 7. Comparison between numerical and analytical results for
the concentration, for different applied voltages. Analytical results
(—); (o) indicates numerical results. (a) ¥, =0.150V; (b)
Vo =0.050V:(c) ¥, =0.010V; (d) ¥, = 0.001 V.
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u/v

0.06

0.04

0.02

0.00 %

0.0 0.2 0.4 0.6 08 1.0 1.2

x/cm

Fig. 8. Comparison between numerical and analytical results for
the potential, for different applied voltages. Analytical results
(—); (o) indicates numerical results. (a) ¥, =0.001V; (b)
Vo =0.010V: (c) ¥, =0.050V; (d) ¥, =0.100V; (e) ¥, =0.150 V.

ci=c,=Ax+B
U=0.0257TIn ¢ +D

in which the constants 4, B and D are listed in Table 1,
as functions of ¥,. It can be seen that, although the
concentrations vary linearly, the electrical potential
has a sharp variation in the neighbourhood of the
anode, for high voltages, which is well reproduced by
the BEM solution.

4.3. Example 3
This is a three ion system consisting of 10> mol cm ™3
CuSO; and 10~*molcm ™3 H,SO,4 in a mass trans-
port situation. Constant velocity is applied in the x-
direction with values of 0.003, 0.03, 0.3 and 3m s/,
respectively. This is not a realistic flow field because
of the slip condition at fixed walls; however, this al-
lows a comparison with an analytical solution to be
derived next. Because solutions of limiting current
density are sought, only the reactive ion ¢ is relevant
here. The geometry of the problem is shown in Fig. 9.
The boundary conditions are as follows: ¢; = 0 at
the cathode; ¢; = ¢, at the anode and at the inlet;
Oc1/0n = 0 at all other surfaces. The numerical val-
ues of the electrolyte properties and constants are as
follows: F =96500Cmol™', n=2,D=72x10"°

cm? s ¢y, = 107 mol cm 3.

Table 1. Parameters for example 2

Vi)V A B D

0.001 3.7161 x 107 9.8142 x 10~  2.3912 x 10!
0.01 3.6714 x 1075 8.1643 x 10™5  2.4409 x 10~
0.05 1.4397 x 1074 2.8014 x 105 2.7414 x 107!
0.10 1.8615x 107*  6.9237 x 107 3.2108 x 10!
0.15 1.9502 x 107*  2.4879 x 107¢ 3.7048 x 107!

1 cathode
—_—V > Y

X

0 S anode 7 12

Fig. 9. Sketch of reactor for test 3.

An analytical solution to the problem can be de-
rived following the same ideas as for the Leveque
solution for parabolic flow [1] by assuming a semi-
infinite electrode as a first approximation when the
electrode length is very large compared to the cell
width, and the convective velocity is also very large.
For this, we take a convection-diffusion equation in a
thin diffusion layer near the electrode, neglecting
convection in the y-direction and considering the
velocity constant in the x-direction, that is,

Oc b &c

ox a_yz (32)

This equation applies to a two-dimensional flow near
the electrode with x measured along the electrode
from its upstream end and y measured perpendicular
from the surface into the solution.

The above partial differential equation has to
satisfy the following boundary and asymptotic con-
ditions:

¢c=0 at y=0 and as x— o0

c=c¢, at x=0 and as y—

To obtain the analytical solution, the following
similarity variable is defined:
Y
2v/Px

in terms of the parameter f = D/v. In this way, the
above boundary-value problem reduces to

" +2 =0

subject to ¢ =0 at e =0 and ¢ = ¢, as € — oo (the
prime denotes derivative with respect to the similarity
variable ¢).

Integrating twice the above ordinary differential
equation and using the corresponding boundary
conditions, we obtain

C 2 € 2
—=— e Tdny=-erf(e
SeZ [ eran=ane
By definition:
Jim = —nm@)
8_)/ y=0
where
ge _1 () V2
dy 2 \Dx
c =4 = ic
y=0 T ﬁ b
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So, finally we obtain

nFDcy, ( v )1/2
VT \Dx
Because the cathode only starts at position x =5

(see Fig. 9), the analytical solution has to be shifted to
this position, producing the final expression:

P Y
im ="z \D(x—5)
2

where Jj, is the limiting current density in A cm™=.
Results are presented in Fig. 10 for several Péclet
numbers. Because of the singularity of the current
density at the leading edge of the electrodes (x = 5),
the BEM solution produced some small oscillations
at the first few points. These oscillations are not un-
common to BEM solutions, and were then treated
with a standard algorithm previously used by Long-
uet—Higgins and Cokelet [19] to smooth the free
surface of water waves. The smoothed current density
distribution is shown in Fig. 11, where an excellent
agreement with the exact solution can now be seen.

Jiim = —

4.4. Example 4

In this test the BEM model is applied to a real size
parallel plate cell with a ferri/ferrocyanide system and
parabolic velocity distribution, and results compared
to the Leveque solution. The geometry used for the
numerical simulation is shown in Fig. 12. The length
of the cathode and anode is 350 mm and the distance
between the plates is 10 mm. At both inlet and outlet
a S0 mm insulating part has been introduced to deal
with the edge effects occurring at the electrodes.

The electrolyte is 0.005Mm K4F€(CN)2‘7 0.01m
K4Fe(CN);~ and 0.5m NaOH at 20 °C. The physical
properties of the electrolyte at this temperature are:

-2

Jim/MA cm

6.00
x/cm

6.50

7.00

Fig. 10. Comparison between numerical and analytical results for
current density distribution before smoothing, for different Péclet
numbers. Analytical results (———); BEM results ( ). Pe: (a) 417,
(b) 4167, (c) 41667 and (d) 416 667.

-2

Jim/MA cm
N
o

6.50

5.00 5.50 6.00 7.00

x/cm

Fig. 11. Comparison between numerical and analytical results for
current density distribution after smoothing, for different Péclet
numbers. Analytical results (— ——); BEM results (——). Pe: (a) 417,
(b) 4167, (c) 41 667 and (d) 416 667.

Density:
p =1020.5kgm?
Viscosity:
p=1.105x 103 kgm's!
Diffusivity of ferricyanide ion:
D=6.631 x 107 ""m*s™"

resulting in a Schmidt number (Sc¢ = u/pD) of 1633.
The Reynolds number is defined as follows:

de(v)p
u

with (v) the average velocity and d. = 4wh/(w + h)
the duct equivalent diameter depending on the height
(h) and the width (w) of the cross section at the inlet
of the channel. Since w in this case is 100 mm, this
gives a value for d. of 18.2 mm.

Comparison of results is shown in Figs 13 and 14
for Reynolds numbers of 55 and 180, corresponding
to average velocities of 0.33cms™! and 1.08 cms™!
and Péclet numbers (Pe = (v)//D) of 2.2 x 10° and
7.3 x 10, respectively, taking the reference length /
as the channel length 450 mm. Also shown in the
Figures are the Leveque solutions [1]. The agreement
between numerical and analytical solutions is rea-
sonable for Pe =2.2 x 10% for Pe =7.3 x 10°, the
agreement is also reasonable apart from the vicinity

Re =

Y

1 5 cathode 40

? X
S anode 40 43

Fig. 12. Sketch of reactor for test 4.
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2.0

1.5

1.0

J/A m™?

0.5

0.0 1 1 | | | |
S 10 15 20 25 30 35 40

Cathode length/cm

Fig. 13. Comparison between numerical and analytical results
for current density (Re = 55). BEM results (——); analytical re-
sults (— —-).

of the leading edge of the electrode, where the BEM
solution shows a steeper variation. Numerical solu-
tions for higher Pe did not converge; therefore, the
difference appears to be due to numerical errors in the
BEM formulation. In this case, the discretization uses
very thin cells near the electrode to capture the con-
vective effects due to the flow boundary layers, gen-
erating integration problems for internal points
located extremely close to the boundary.

5. Conclusions

This paper has described a numerical model, based
on the boundary element method, for the calculation

5.0

4.0 r

3.0

J/A m™”?
N
o

5 10 15 20 25 30 35 40
Cathode length/cm

Fig. 14. Comparison between numerical and analytical results
for current density (Re =180). BEM results (——); analytical
results (— —-).

of concentration, potential and current density dis-
tributions in electrochemical cells controlled by dif-
fusion, convection and migration. The formulation
employs the complete Nernst—Planck equations and
can deal with multiple ions and strongly nonlinear
boundary conditions. The mathematical model em-
ployed reduces to a potential model in regions where
the concentration of the ions is constant. Therefore,
depending on the applied voltage, the current distri-
butions obtained can vary from a secondary distri-
bution up to a limiting current situation.

Some simple tests on parallel plate reactors have
been investigated here, producing accurate results.
We are now investigating the possibility of subdi-
viding the flow region into subdomains to improve
the accuracy of the formulation for very high Péclet
numbers.

Acknowledgements

This work forms part of the Brite—Euram project BE-
5187, contract number BRE2-CT92-0170, funded by
the European Commission. We thank our partners
J. Deconinck and L. Bortels, from Vrije Universiteit
Brussels, for supplying some of the numerical exam-
ples and their analytical and MDUM results. We also
thank the referees for constructive comments on the
original version of the paper.

References

[11  J. Newman, ‘Electrochemical Systems’, 2nd edn, Prentice-
Hall, Englewood Cliffs, NJ (1991).
[2] R. Bialecki, R. Nahlik and M. Lapkowski, Electrochim.
Acta 29 (1984) 905.
[31 J. Deconinck, G. Maggetto and J. Vereecken, J. Electro-
chem. Soc. 132 (1985) 2960.
[4] H. Kawamoto, J. Appl. Electrochem. 22 (1992) 1113.
[S] K. Bouzek, K. Borve, O. A. Lorentsen, K. Osmundsen,
1. Rousar and J. Thonstad, J. Electrochem. Soc. 142
(1995) 64.
[6] L. Martens and K. Hertwig, Electrochim. Acta 40 (1995)
387.
. Steffen and I. Rousar, ibid. 40 (1995) 379.
. P. Buck, J. Electroanal. Chem. 271 (1981) 1.
. V. Sokirko, ibid. 364 (1994) 51.
. Katagiri, J. Appl. Electrochem. 21 (1991) 487.
. I. Kharkats, A. V. Sokirko and F. H. Bark, Electrochim.
Acta 40 (1995) 247.
[12] J. M. Bisang, J. Appl. Electrochem. 23 (1993) 966.
[13] L. Bortels and J. Deconinck, A new approach for solving
mass and charge transport in electrochemical systems.
Third European Symposium on Electrochemical Engi-
neering, Nancy, France (1994).
[14] M. Georgiadou and R. Alkire, J. Electrochem. Soc. 141
(1994) 679.
[15] Z. H. Qiu, L. C. Wrobel and H. Power, Enggn. Anal.
Boundary elements 15 (1995) 299.
[16] C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, ‘Boundary
Element Techniques: Theory and Applications in Engi-
neering’, Springer-Verlag, Berlin (1984).
[17]  J. Deconinck and L. Bortels, Final Project Report, Brite—
Euram project BE-5187 (1995).
[18] J.P.S. Azevedo and L. C. Wrobel, Int. J. Numer. Methods
Eng. 26 (1988) 19.
[191 M. S. Longuet-Higgins and E. D. Cokelet, Proc. R. Soc.
Lond. A350 (1976) 1.

==}

<> P> 7



	Abstract
	Introduction
	Governing equations
	Numerical formulation
	Applications
	Conclusions
	Acknowledgements
	References

