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The present work describes novel numerical formulations based on integral equations for calculating
steady-state distributions of concentration, potential and current density in two-dimensional multi-
ple-ion electrochemical systems involving di�usion, convection and migration e�ects. For simplicity,
the electrolyte solutions are considered to be dilute and at a constant temperature. Numerical pro-
cedures using the boundary element method (BEM) have been developed speci®cally for the problem,
and are brie¯y described in the text. The accuracy and e�ciency of these procedures are assessed with
several tests, involving binary and three-ion systems, linear and non-linear boundary conditions, and
problems that are either di�usion- or convection-dominated, or both.
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1. Introduction

Computational electrochemistry is a rapidly devel-
oping ®eld centred on three basic theories describing
the mass and ion transport processes in electro-
chemical systems: potential theory, Nernst layer
theory and Nernst±Planck theory [1]. The potential
theory, being the simplest from the mathematical
point of view, is widely applied in theoretical in-
vestigations of ionic transport and current distribu-
tion. Much work has been done in recent years in the
analysis of di�erent electrochemical processes with
alternative analytical and numerical methods like the

more traditional ®nite di�erence method (FDM),
the ®nite element method (FEM) and, more recently,
the boundary element method (BEM) [2±7].

To assure a uniform conductivity, the presence of
inert supporting electrolyte is necessary. But there is a
notable absence of inert ions in redox membranes
used as modi®ers of electron conductivity electrodes,
in solid and liquid ion exchange membranes, and in
mixed conductor sandwich cells between metals or
between bathing electrolytes, or one of each. Like-
wise, thin layer electrolytes between metals need not
contain supporting electrolyte. In all these cases,
there is an enhancement of the steady-state current

List of symbols

ck concentration of species k (mol mÿ3�
Dk di�usion coe�cient of species k (m2 sÿ1�
F Faraday constant �A smolÿ1�
i� exchange current density �Amÿ2�
J current density �Amÿ2�
Jlim limiting current density �Amÿ2�
N k ¯ux density of species k (mol mÿ2 sÿ1�
Pe PeÂ clet number
t time (s)
q normal derivative of concentration (molm)4)
uk mechanical mobility of species k (m2 mol Jÿ1sÿ1�
U electrical potential (V)
rU electrical ®eld (Vmÿ1�
v velocity of the solvent �m sÿ1�
V voltage (V)
R gas constant �J molÿ1 Kÿ1�
T absolute temperature (K)

x; y Cartesian coordinates (m)
zk charge number of species k

Greek symbols

a transfer coe�cient
n source point
q electrolyte density �kg mÿ3�
l electrolyte viscosity �kg mÿ1sÿ1�
v ®eld point

Subscripts
a anode
b boundary point
c cathode, concentration
fd ®rst derivative
i internal point
k species k
sd second derivative
v electrical potential
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and potential theory is no longer valid [8]. A more
complicated model, based on Nernst layer theory, is
then actively used by many researchers [9±13].

For modelling narrow gap cells, determining the
current distribution on small features within the dif-
fusion layer or, in general, for cells with concentra-
tion gradients extending over a signi®cant portion of
the cell region, the Nernst layer approximation is no
longer valid. In this area, when convective e�ects are
not negligible, which often occurs in practice, the
di�usion, convection and migration e�ects must be
simultaneously considered. So, the Nernst±Planck
transport equation has to be taken into account.
Although studies of current distribution have reached
a very high level with the aid of powerful computers,
solutions of the Nernst±Planck model hardly
appeared. So far, only Georgiadou and Alkire [14]
published results based on this model, using the ®nite
di�erence method.

The main objective of the present work is to apply
BEM formulations to solve the Nernst±Planck model
for predicting concentration, current and potential
distributions in electrochemical systems. The main
theoretical aspects and numerical algorithms of the
BEM model have already been presented in detail
elsewhere [15], and will only be brie¯y reviewed here;
this paper concentrates on more practical applica-
tions to parallel electrochemical cells.

This research forms part of a joint European
project on the development and evaluation of meth-
ods for prediction of current density distribution in
electrochemical cells, under the sponsorship of the
Brite±Euram programme. The project involves the
development of two di�erent numerical formulations,
one being the BEM and the other the Multi-Dimen-
sional Upwind Method (MDUM), the theoretical
basis of which has been reported elsewhere [13].
Comparison of results obtained with these two dis-
tinct approaches will be presented here.

2. Governing equations

For a dilute solution in a unionized solvent at con-
stant pressure and temperature, the ¯ux density of
each ionic species k is given by [1]

N k � ÿukzkFckrU ÿ Dkrck � ckv �1�
The symbols are as stated at the outset of this paper.
The three terms on the right-hand side of Equation 1
describe the e�ects of migration, di�usion and con-
vection, respectively.

The total charge per mole ion is its charge number
multiplied by the Faraday constant, zkF , and the
current density is hence the ¯ux of the ion multiplied
by zkF . For all the species, we have

J � F
X

k

zkN k �2�
The material balance for a minor component in an

electrolyte can be expressed by

@ck

@t
� ÿr � N k � Rk �3�

with @ck=@t being the accumulation of species
k;r � N k the di�erence between the input and the
output and Rk the production rate of ion k due to
homogeneous chemical reactions in the bulk of the
solution. In electrochemical systems, reactions are
frequently restricted to electrode surfaces, in which
case Rk can be considered as zero.

Equations 1 to 3 (with Rk � 0� are equivalent to
the following set of equations:

@ck

@t
� v � rck � Fzkr � �ukckrU� � r � �Dkrck� �4�

r � ÿF 2
X

k

z2kukckrU ÿ F
X

k

zkDkrck

( )
� 0 �5�

where Equation 5 was obtained by considering con-
servation of charge and the condition of electro-
neutrality X

k

zkck � 0 �6�

The above set of equations describes the transport of
mass and charge in dilute electrochemical solutions.
Even in the simple case of an in®nite dilute solution, a
complex set of coupled partial di�erential equations
has to be dealt with.

In what follows, only the case of dilute solutions is
considered, hence the concentration of species does
not a�ect the velocity ®eld. Thus, the ¯uid mechanics
can be studied separately from the electrochemical
analysis, which means that the convective velocity is
known in the present case and Equations 4 to 6 can
be solved for the unknown variables U and ck.

3. Numerical formulation

3.1. Mathematical model

For two-dimensional steady-state problems, assum-
ing that reactions are restricted to the electrodes and
that the coe�cients uk; zk and Dk are all constant,
Equations 4 and 5 can be expressed in the form:

Dkr2ck ÿ vx ÿ Fzkuk
@U
@x

� �
@ck

@x

ÿ vy ÿ Fzkuk
@U
@y

� �
@ck

@y
� ÿ Fzkukr2U

ÿ �
ck �7�

X
k

z2kukck

 !
r2U �

X
k

z2kuk
@ck

@x

 !
@U
@x

�
X

k

z2kuk
@ck

@y

 !
@U
@y
� ÿ 1

F

X
k

zkDkr2ck �8�

For the purpose of deriving a numerical algorithm
employing the boundary element method, the veloc-
ity ®eld is initially divided into an average and a
perturbation as follows:

vx�x; y� � vx � Px�x; y� vy�x; y� � vy � Py�x; y�
where vx and vy represent the mean (constant)
velocity, and Px; Py represent the deviation from the
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mean at each point. Equation 7 can then be rewritten
in the form:

Dkr2ck ÿ vx
@ck

@x
ÿ vy

@ck

@y
� Pcxk

@ck

@x
� Pcyk

@ck

@y
� Cxyk ck

�9�
with

Pcxk �x; y� � Px ÿ Kk
@U
@x

Pcyk �x; y� � Py ÿ Kk
@U
@y

Cxyk �x; y� � ÿKkr2U

Kk � Fzkuk

Similarly, Equation 8 is rewritten in the form:

r2U ÿ vux
@U
@x
ÿ vuy

@U
@y
� Pux

@U
@x
� Puy

@U
@y
� Uxy

�10�
where the terms

P
k z2kuk@ck=@x and

P
k z2kuk@ck=@y in

Equation 9 can be interpreted as a kind of convective
velocity, and hence also divided into an average and a
perturbation:

vux�x; y� � vux � Pux�x; y�
vuy�x; y� � vuy � Puy�x; y�

with

vux�x; y� � ÿ
X

k

z2kuk
@ck

@x

 ! X
k

z2kukck

 !,

vuy�x; y� � ÿ
X

k

z2kuk
@ck

@y

 ! X
k

z2kukck

 !,

Uxy�x; y� � ÿ
X

k

zkDkr2ck

 !
F
X

k

z2kukck

 !,

It is important to notice that, while the terms vx and
vy in Equation 9 correspond to a known velocity ®eld,
the terms vux and vuy in Equation 10 are dependent on
the unknown concentrations ck.

The iterative scheme of solution of the system
starts by ®xing an initial variation for the electrical
potential U , and solving a set of Equations 9 for
K ÿ 1 concentrations using the BEM. This solution
provides values of ck and @ck=@n along the boundary.
With these values it is then possible to directly
calculate values of ck at internal points, ®rst deriva-
tives of ck at boundary and internal points, and sec-
ond derivatives of ck at internal points. The values of
concentration and derivatives of the last ion are
obtained using Equation 6 and its derivatives.

Next, Equation 10 is solved for U using the pre-
viously calculated distributions of ck and their
derivatives to evaluate vux; vuy and Uxy . Initially, a
boundary element scheme is used to calculate U and
@U=@n along the boundary. Thus, values of
@U=@x; @U=@y and r2U at internal points can be
evaluated explicitly. These are then used to give a
better estimate of the concentrations ck by solving

Equation 9 again. This procedure is repeated until
convergence is achieved for all concentrations ck

and U .

3.2. BEM formulation for multiple-ion electrochemical
systems

The fundamental solution of the two-dimensional
steady-state di�usion-convection equation with con-
stant velocity ®eld

Dr2cÿ vx
@c
@x
ÿ vy

@c
@y
� 0

is of the form [15]

c��n; v� � 1

2pD
eÿ

vár
2DK0

jvjr
2

� �
where v is the velocity vector, n and v represent source
and ®eld points, respectively, r is the modulus of r,
the distance vector between n and v, and K0 is the
Bessel function of second kind of zero order.

By employing the above fundamental solution and
Green's identities, when source points are inside the
domain, Equation 9 can be transformed into the
following integral equation

c�n� ÿ D
Z

C
c��n; v� @c�v�

@nv
dC�v�

� D
Z

C

@c��n; v�
@nv

c�v�dC�v� �
Z

C
c��n; v�vn�v�c�v�dC�v�

� ÿ
Z

X
c��n; v�

"
Pcx�v� @c�v�

@xv
� Pcy�v� @c�v�

@yv

� Cxy�v�c�v�
#
dX�v� �11�

where vn � v � n, n is the unit outward normal vector.
For simpli®cation, we will denote by b � Pcx

�@c=@x� � Pcy�@c=@y� � Cxyc the term within brackets
on the right-hand side of Equation 11.

It is important to notice that only the fundamental
solution depends on the position of the source point;
all other terms are only related to ®eld points. Based
on this, it is possible to take derivatives with respect
to coordinates of the source point directly on the
above Equation 15.

The ®rst derivative of function c with respect to
coordinate x of the source point is thus obtained by
di�erentiating Equation 11:

@c�n�
@xn

ÿ D
Z

C

@c��n; v�
@xn

q�v�dC

� D
Z

C

@2c��n; v�
@nv@xn

c�v�dC�
Z

C

@c��n; v�
@xn

�vn�v�c�v�dC

� ÿ
Z

X

@c��n; v�
@xn

b�v�dX �12�

The ®rst derivative of function c with respect to co-
ordinate y of the source point is given, analogously:

ANALYSIS OF CURRENT DENSITY DISTRIBUTION 1335



@c�n�
@yn

ÿ D
Z

C

@c��n; v�
@yn

q�v�dC� D
Z

C

@2c��n; v�
@nv@yn

c�v�dC

�
Z

C

@c��n; v�
@yn

�vn�v�c�v�dC � ÿ
Z

X

@c��n; v�
@yn

b�v�dX �13�

A similar procedure can be undertaken for obtaining
integral equations for the second derivatives,
although care must be taken when di�erentiating the
domain integral because of the strong singularity of
the kernel [15].

To obtain a boundary integral representation
analogous to Equation 11, the limit is taken when the
source point n approaches the boundary C in Equa-
tion 11 producing the expression:

a�n�c�n� ÿ D
Z

C
c��n; v�q�v�dC�v�

� D
Z

C

@c��n; v�
@nv

c�v�dC�v� �
Z

C
c��n; v��vn�v�c�v�dC�v�

� ÿ
Z

X
c��n; v�b�v�dX�v� �14�

where a�n� is a function of the internal angle sub-
tended at point n. In particular, a � 1=2 on a smooth
boundary.

Equations for the derivatives of c with respect to
the coordinates of the source point, for a source point
on the boundary, can also be obtained by using
similar limiting processes. Again, care must be taken
in evaluating the jumps that appear in these limiting
processes because of the strong singularity of the
kernels; thus, the corresponding surface integrals
have to be evaluated in the sense of Cauchy principal
value and Hadamard ®nite parts [15].

3.3. Numerical solution

For the numerical solution by the BEM, the boun-
dary is discretized into elements and the domain into
cells [16]. The boundary integral Equation 14 for the
concentration is applied at each boundary node using
a collocation technique, generating a system of
equations of the form

HcbCb ÿ GcbQc � ÿEcbBc �15�
In the above system, Hcb and Gcb are standard in-
¯uence matrices, Ecb is a matrix resulting from the
domain integral, Cb is the vector of boundary con-
centrations (for a speci®c ion), Qc is a vector con-
taining the normal derivatives @c=@n, and Bc is a
vector containing values of bc at each internal node.

To eliminate the domain variable bc from the
system of Equations 15, we start by writing the fol-
lowing equations for the concentration and its ®rst
derivatives at internal points, which results from the
application of Equations 11±13

Ci � HcCb ÿ GcQc � ÿEcBc �16�
@Ci

@x
� HcxfdCb ÿ GcxfdQc � ÿEcxfdBc �17�

@Ci

@y
� HcyfdCb ÿ GcyfdQc � ÿEcyfdBc �18�

Thus, multiplying Equation 16 by Cxy , Equation 17
by Pcx, Equation 18 by Pcy and adding the resulting
equations gives

I Bc � HciCb ÿ GciQc � ÿEciBc �19�
Here, I is the unit matrix and

Hci � CxyHc � PcxHcxfd � PcyHcyfd

Gci � CxyGc � PcxGcxfd � PcyGcyfd

Eci � CxyEc � PcxEcxfd � PcyEcyfd

Eliminating the variable b from Equations 15 and
19, another matrix system is constructed,

�Hcb ÿ Ecb�Eci � I�ÿ1Hci�Cb

� �Gcb ÿ Ecb�Eci � I�ÿ1Gci�Qc

�20�

which only relates boundary values. With it, all the
boundary unknowns can be evaluated. This step is
completed by solving a system of equations. Once all
nodal boundary values are obtained, the system of
Equations 19 is also solved to provide the domain
terms bc. After this, the values of concentration at
internal points, and derivatives at boundary and
internal points, can be calculated explicitly by using
Equations 16±18 and the following [15]:

@2Ci

@x2
� HcxsdCb ÿ GcxsdQc � ÿEcxsdBc �21�

@2Ci

@y2
� HcysdCb ÿ GcysdQc � ÿEcysdBc �22�

@Cb

@x
� HbxfdCb ÿ GbxfdQc � ÿEbxfdBc �23�

@Cb

@y
� HbyfdCb ÿ GbyfdQc � ÿEbyfdBc �24�

3.3.1. Solution for the electrical potential. The set of
matrix equations for calculating the electrical poten-
tial U is obtained following the same ideas as for the
concentration c. These matrices are of the form [15]:

HubUb ÿ GubQu � ÿEubBu �25�
@Ui

@x
� HuxfdUb ÿ GuxfdQu � ÿEuxfdBu �26�

@Ui

@y
� HuyfdUb ÿ GuyfdQu � ÿEuyfdBu �27�

@2Ui

@x2
� HuxsdUb ÿ GuxsdQu � ÿEuxsdBu �28�

@2Ui

@y2
� HuysdUb ÿ GuysdQu � ÿEuysdBu �29�

I Bu ÿ Uxy � HuiUb ÿ GuiQu � ÿEuiBu �30�
In the above, vectors Ub and Qu comprise the values
of the electrical potential and its normal derivative,
respectively, at boundary nodes; vectors Ui and Bu

comprise the values of U and the term b, respectively,
at internal points. The domain variable b for the
electrical potential equation is de®ned in the form

bu � Pux
@Ui

@x
� Puy

@Ui

@y
� Uxy
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The ®nal set of equations for the unknown values
of U and @U=@n on the boundary is obtained by
substituting the vector Bu in Equation 25 by its ex-
pression in terms of Ub and Qu, given by Equation 30.
The ®nal result is of the form:

�Hub ÿ Eub�Eui � I�ÿ1Hui�Ub

� �Gub ÿ Eub�Eui � I�ÿ1Gui�Qu ÿ Eub�Eui � I�ÿ1Uxy

�31�
where

Hui � PuxHuxfd � PuyHuyfd

Gui � PuxGuxfd � PuyGuyfd

Eui � PuxEuxfd � PuyEuyfd

After solving system (31) and calculating the val-
ues of Bu by solving system (30), it is possible to
calculate ®rst and second derivatives at internal
points, explicitly, using Equations 26 to 29.

3.3.2. Iteration procedure. The iteration procedure is
carried out with the following steps:

(i) With an initial estimate of the electrical po-
tential distribution (which can be a null ®eld)
calculate Pcx; Pcy and Cxy .

(ii) Solve Equation 20 for the boundary values of
cb and qc � @cb=@n (subscript b means that the
source point is on the boundary).

(iii) Calculate the values of bc at internal points by
solving the system (19).

(iv) Calculate the values of @cb=@x and @cb=@y
using Equations 23 and 24.

(v) Calculate the values of ci, @ci=@x, @ci=@y,
@2ci=@x2 and @2ci=@y2 (subscript i means that
the source point is on the domain), using
Equations 16±18, 21 and 22.

(vi) Repeat steps 1 to 5 for the concentration of
ions 1 to K ÿ 1.

(vii) Calculate the concentration of ion K, and its
derivatives, by enforcing the electroneutrality
condition.

(viii) Using the above values, calculate the values of
vux, vuy and Uxy and solve the system of Equa-
tions 31 to provide a new distribution of Ub and
qu.

(ix) Calculate the values of bu at internal points by
solving the system (30).

(x) Calculate the values of @Ui=@x, @Ui=@y,
@2Ui=@x2 and @2Ui=@y2 using Equations 26±29.

(xi) Update the values of Pcx, Pcy and Cxy for each
ion, and go to step 2.

Convergence of the solution is veri®ed for all the
concentrations and the electrical potential. Thus, it is
possible (and likely) that some of the variables will
converge faster than others. In this case, the iteration
loop proceeds until convergence of the remaining
variables is achieved.

In spite of the large number of matrix equations
involved in the iteration process, its e�ciency is very
reasonable. This is because all the matrices depend

only on geometry, the di�usion coe�cient (which is
constant) and the convection coe�cients. For the
concentration Equation 9, it is recalled that the terms
�vx and �vy correspond to a known velocity ®eld which
is constant throughout the iteration steps. However,
for the electrical potential Equation 10, the terms vux

and vuy depend on c. The procedure adopted was to
maintain the mean values �vux and �vuy from the ®rst
iteration constant throughout the process, and only
update the perturbation terms Pux and Puy .

4. Applications

To assess the boundary element formulations pre-
sented here, simulations are now performed on par-
allel plate reactors with fully developed laminar
parabolic ¯ows. Electrolytes with two or three ions
are considered such that binary solutions and solu-
tions with an excessive amount of supporting elec-
trolyte can be modelled.

4.1. Example 1

The ®rst example is a simple theoretical problem in-
volving convection, di�usion and migration e�ects.
The electrolyte consists of three ions and ion 1 is
taken as reactive. A simple linear boundary condition
coupling the concentrations and electrical potential at
cathode and anode is imposed. All constants and
variables are given in dimensionless form, as follows:

F � uk � Dk � 1; z1 � 2; z2 � 1; z3 � ÿ2
for k � 1; 2; 3.

A sketch of the parallel plate reactor is shown in
Fig. 1. The parabolic velocity ®eld is given by
vx � 500y�1ÿ y�, vy � 0. The following boundary
conditions are imposed:
at x � 0

c1 � 0:5 c2 � 1 c3 � 1
@U
@n
� 0

at x � 11

@c1
@n
� 0 ;

@c2
@n
� 0 ;

@c3
@n
� 0 ;

@U
@n
� 0

at y � 0 and 5 � x � 6

2c1
@U
@n
� @c1
@n
� ÿ0:5

c2
@U
@n
� @c2
@n
� 0

c3 � c1 � 0:5 c2

Fig. 1. Sketch of reactor for test 1.
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@U
@n
� ÿ0:5
�2c1 � 2c3 � 0:5 c2�

at y � 0 and x � 5; x � 6

@c1
@n
� 0;

@c2
@n
� 0;

@c3
@n
� 0 ;

@U
@n
� 0

at y � 0 and x � 5:5

U � 0

at y � 1 and 5 � x � 6

2c1
@U
@n
� @c1
@n
� 0:5

c2
@U
@n
� @c2
@n
� 0

c3 � c1 � 0:5 c2
@U
@n
� 0:5

�2c1 � 2c3 � 0:5 c2�
at y � 1 and x � 5 ; x � 6

@c1
@n
� 0 ;

@c2
@n
� 0;

@c3
@n
� 0 ;

@U
@n
� 0

Numerical results obtained for the concentration
of ion 1 along the faces y � 0 and y � 1 are presented
in Figs 2 and 3, compared to those obtained using the
Multi-Dimensional Upwinding Method (MDUM)
[17]. The solutions are in excellent agreement al-
though the numerical methods of solution are totally
di�erent. Very similar comparisons were obtained for
the concentrations of ions 2 and 3.

This problem, although geometrically simple,
presents a mild singularity at the leading edges of the
electrodes caused by a discontinuity in the current
density distribution, which is generally di�cult to
treat using numerical methods. A small undershoot in
the concentration at the leading edge can be noted in
the BEM results of Fig. 2, while a small overshoot is
seen in Fig. 3. These are very small errors which can

only be appreciated because of the scales adopted in
the Figures.

To con®rm the above statement, we notice that the
boundary conditions at the electrolytes are given as
Robin conditions for c1 and c2, a Dirichlet condition
for c3 and a Neumann condition for the electrical
potential U ; these should correspond to a constant
current density equal to one (the current density is
zero at all other faces). By substituting the results
obtained for the concentrations, their gradients and
the normal derivative of the potential into the general
expression (2) for calculating the current density, we
found an almost constant current density distribution
equal to 0:999 962; with a maximum value of 1:000 12
at the centre of the electrolyte.

The variation of the electrical potential along the
top and bottom faces can be seen in Figs 4 and 5,
showing again a very good agreement with the
MDUM solution.

Fig. 2. Variation of concentration c1 along y � 1. BEM results
(Ð±±); MDUM results (± ± ±).

Fig. 3. Variation of concentration c1 along y � 0. BEM results
(Ð±±); MDUM results (± ± ± ).

Fig. 4. Variation of potential U along y � 1. BEM results (Ð±±);
MDUM results (± ± ±).
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4.2. Example 2

The second test is a problem of di�usion and migra-
tion in a binary electrolyte system; no convection is
involved in order that analytical solutions can be ob-
tained to compare with the numerical ones. It consists
of a parallel plate cell with metal dissolution at the
anode �x � 0� and metal deposition at the cathode
�x � L�, the geometry of which is shown in Fig. 6.

For both electrode reactions, the following Butler±
Volmer polarization equation is applied [1]:

Jna � i�a
c1
c1b

exp
aaF
RT
�Va ÿ U�

� ��
ÿ exp ÿacnF

RT
�Va ÿ U�

� ��
Jnc �ÿ i�c

c1
c1b

exp
aaF
RT
�Vc ÿ U�

� ��
ÿ exp ÿacnF

RT
�Vc ÿ U�

� ��
in which a is the transfer coe�cient.

The following values of constants and physical
properties are adopted:

i�a � i�c � 0:01 A cmÿ2

D1 � D2 � 10ÿ5 cm2sÿ1

z1 � 1 z2 � ÿ1
L � 1 cm c1b � 10ÿ4 mol cmÿ3

Vc � 0:0 V ; aa � ac � 0:5

R � 8:314 J molÿ1Kÿ1 T � 25 �C

The boundary conditions for this problem are:
at x � 0

c1 � c2
@c2
@n
� 38:6 c2

@U
@n

@U
@n
� 2:6846 c1
�c1 � c2� vexp

with

vexp � exp�19:47 �Vc ÿ U�� ÿ exp�19:47 �U ÿ Vc��
at x � 1

c1 � c2
@c2
@n
� 38:6 c2

@U
@n

@U
@n
� 2:6846 c1
�c1 � c2� vexp

with

vexp � exp�19:47 �Va ÿ U�� ÿ exp�19:47 �U ÿ Va��
at x � 0:5; y � 0 and y � 0:3

c1 � c2 � 10ÿ4 mol cmÿ3

U � Dÿ 0:0596

at y � 0 and y � 0:3:

@c1
@n
� 0;

@c2
@n
� 0 ;

@U
@n
� 0

The main di�erence between this test and the
previous one is that the boundary conditions for the
potential at the anode and cathode are nonlinear, and
the system of equations is thus solved iteratively using
a Newton±Raphson technique (see [18] for more de-
tails).

Numerical results for di�erent voltages Va applied
at the anode are presented in Figs 7 and 8, and
compared to the exact solution given by [17]

Fig. 5. Variation of potential U along y � 0. BEM results (Ð±±);
MDUM results (± ± ±).

Fig. 6. Sketch of reactor for test 2.

Fig. 7. Comparison between numerical and analytical results for
the concentration, for di�erent applied voltages. Analytical results
(Ð±±); ��� indicates numerical results. (a) Va � 0:150 V ; (b)
Va � 0:050 V : (c) Va � 0:010 V; (d) Va � 0:001 V.

ANALYSIS OF CURRENT DENSITY DISTRIBUTION 1339



c1 � c2 � Ax� B

U � 0:0257 ln c1 � D

in which the constants A;B and D are listed in Table 1,
as functions of Va. It can be seen that, although the
concentrations vary linearly, the electrical potential
has a sharp variation in the neighbourhood of the
anode, for high voltages, which is well reproduced by
the BEM solution.

4.3. Example 3

This is a three ion system consisting of 10ÿ5 mol cmÿ3

CuSO4 and 10ÿ4 mol cmÿ3 H2SO4 in a mass trans-
port situation. Constant velocity is applied in the x-
direction with values of 0.003, 0.03, 0.3 and 3m sÿ1,
respectively. This is not a realistic ¯ow ®eld because
of the slip condition at ®xed walls; however, this al-
lows a comparison with an analytical solution to be
derived next. Because solutions of limiting current
density are sought, only the reactive ion c1 is relevant
here. The geometry of the problem is shown in Fig. 9.

The boundary conditions are as follows: c1 � 0 at
the cathode; c1 � cb at the anode and at the inlet;
@c1=@n � 0 at all other surfaces. The numerical val-
ues of the electrolyte properties and constants are as
follows: F � 96 500 Cmolÿ1; n � 2;D � 7:2� 10ÿ6

cm2 sÿ1; cb � 10ÿ5 mol cmÿ3.

An analytical solution to the problem can be de-
rived following the same ideas as for the Leveque
solution for parabolic ¯ow [1] by assuming a semi-
in®nite electrode as a ®rst approximation when the
electrode length is very large compared to the cell
width, and the convective velocity is also very large.
For this, we take a convection-di�usion equation in a
thin di�usion layer near the electrode, neglecting
convection in the y-direction and considering the
velocity constant in the x-direction, that is,

v
@c
@x
� D

@2c
@y2

�32�

This equation applies to a two-dimensional ¯ow near
the electrode with x measured along the electrode
from its upstream end and y measured perpendicular
from the surface into the solution.

The above partial di�erential equation has to
satisfy the following boundary and asymptotic con-
ditions:

c � 0 at y � 0 and as x!1
c � cb at x � 0 and as y !1

To obtain the analytical solution, the following
similarity variable is de®ned:

� � y
2
�����
bx
p

in terms of the parameter b � D=v. In this way, the
above boundary-value problem reduces to

c00 � 2�c0 � 0

subject to c � 0 at � � 0 and c � cb as �!1 (the
prime denotes derivative with respect to the similarity
variable �).

Integrating twice the above ordinary di�erential
equation and using the corresponding boundary
conditions, we obtain

c
cb
� 2���

p
p
Z �

0

eÿg2dg � erf���

By de®nition:

Jlim � ÿnFD
@c
@y

���
y�0

where

@c
@y
� 1

2

v
Dx

� �1=2
c0

c0
���
y�0
� A � 2���

p
p cb

Fig. 8. Comparison between numerical and analytical results for
the potential, for di�erent applied voltages. Analytical results
(Ð±±); ��� indicates numerical results. (a) Va � 0:001 V; (b)
Va � 0:010 V: (c) Va � 0:050 V; (d) Va � 0:100 V; (e) Va � 0:150 V.

Table 1. Parameters for example 2

Va=V A B D

0.001 3:7161� 10ÿ6 9:8142� 10ÿ5 2:3912� 10ÿ1

0.01 3:6714� 10ÿ5 8:1643� 10ÿ5 2:4409� 10ÿ1

0.05 1:4397� 10ÿ4 2:8014� 10ÿ5 2:7414� 10ÿ1

0.10 1:8615� 10ÿ4 6:9237� 10ÿ6 3:2108� 10ÿ1

0.15 1:9502� 10ÿ4 2:4879� 10ÿ6 3:7048� 10ÿ1

Fig. 9. Sketch of reactor for test 3.
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So, ®nally we obtain

Jlim � ÿ nFDcb���
p
p v

Dx

� �1=2
Because the cathode only starts at position x � 5

(see Fig. 9), the analytical solution has to be shifted to
this position, producing the ®nal expression:

Jlim � ÿ nFDcb���
p
p v

D�xÿ 5�
� �1=2

where Jlim is the limiting current density in A cmÿ2.
Results are presented in Fig. 10 for several PeÂ clet

numbers. Because of the singularity of the current
density at the leading edge of the electrodes �x � 5�,
the BEM solution produced some small oscillations
at the ®rst few points. These oscillations are not un-
common to BEM solutions, and were then treated
with a standard algorithm previously used by Long-
uet±Higgins and Cokelet [19] to smooth the free
surface of water waves. The smoothed current density
distribution is shown in Fig. 11, where an excellent
agreement with the exact solution can now be seen.

4.4. Example 4

In this test the BEM model is applied to a real size
parallel plate cell with a ferri/ferrocyanide system and
parabolic velocity distribution, and results compared
to the Leveque solution. The geometry used for the
numerical simulation is shown in Fig. 12. The length
of the cathode and anode is 350 mm and the distance
between the plates is 10 mm. At both inlet and outlet
a 50mm insulating part has been introduced to deal
with the edge e�ects occurring at the electrodes.

The electrolyte is 0:005M K4Fe(CN)
3ÿ
6 ; 0:01M

K4Fe(CN)
4ÿ
6 and 0:5M NaOH at 20 �C. The physical

properties of the electrolyte at this temperature are:

Density:

q � 1020:5 kgmÿ3

Viscosity:

l � 1:105� 10ÿ3 kgmÿ1 sÿ1

Di�usivity of ferricyanide ion:

D � 6:631� 10ÿ10 m2 sÿ1

resulting in a Schmidt number �Sc � l=qD� of 1633.
The Reynolds number is de®ned as follows:

Re � dehviq
l

with hvi the average velocity and de � 4wh=�w� h�
the duct equivalent diameter depending on the height
�h� and the width �w� of the cross section at the inlet
of the channel. Since w in this case is 100mm, this
gives a value for de of 18.2mm.

Comparison of results is shown in Figs 13 and 14
for Reynolds numbers of 55 and 180, corresponding
to average velocities of 0:33 cm sÿ1 and 1:08 cm sÿ1

and PeÂ clet numbers �Pe � hvil=D� of 2:2� 106 and
7:3� 106, respectively, taking the reference length l
as the channel length 450mm. Also shown in the
Figures are the Leveque solutions [1]. The agreement
between numerical and analytical solutions is rea-
sonable for Pe � 2:2� 106; for Pe � 7:3� 106, the
agreement is also reasonable apart from the vicinity

Fig. 10. Comparison between numerical and analytical results for
current density distribution before smoothing, for di�erent PeÂ clet
numbers. Analytical results (± ± ±); BEM results (Ð±±). Pe: (a) 417,
(b) 4167, (c) 41 667 and (d) 416 667.

Fig. 11. Comparison between numerical and analytical results for
current density distribution after smoothing, for di�erent PeÂ clet
numbers. Analytical results (± ± ±); BEM results (Ð±±). Pe: (a) 417,
(b) 4167, (c) 41 667 and (d) 416 667.

Fig. 12. Sketch of reactor for test 4.
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of the leading edge of the electrode, where the BEM
solution shows a steeper variation. Numerical solu-
tions for higher Pe did not converge; therefore, the
di�erence appears to be due to numerical errors in the
BEM formulation. In this case, the discretization uses
very thin cells near the electrode to capture the con-
vective e�ects due to the ¯ow boundary layers, gen-
erating integration problems for internal points
located extremely close to the boundary.

5. Conclusions

This paper has described a numerical model, based
on the boundary element method, for the calculation

of concentration, potential and current density dis-
tributions in electrochemical cells controlled by dif-
fusion, convection and migration. The formulation
employs the complete Nernst±Planck equations and
can deal with multiple ions and strongly nonlinear
boundary conditions. The mathematical model em-
ployed reduces to a potential model in regions where
the concentration of the ions is constant. Therefore,
depending on the applied voltage, the current distri-
butions obtained can vary from a secondary distri-
bution up to a limiting current situation.

Some simple tests on parallel plate reactors have
been investigated here, producing accurate results.
We are now investigating the possibility of subdi-
viding the ¯ow region into subdomains to improve
the accuracy of the formulation for very high PeÂ clet
numbers.

Acknowledgements

This work forms part of the Brite±Euram project BE-
5187, contract number BRE2±CT92-0170, funded by
the European Commission. We thank our partners
J. Deconinck and L. Bortels, from Vrije Universiteit
Brussels, for supplying some of the numerical exam-
ples and their analytical and MDUM results. We also
thank the referees for constructive comments on the
original version of the paper.

References

[1] J. Newman, `Electrochemical Systems', 2nd edn, Prentice-
Hall, Englewood Cli�s, NJ (1991).

[2] R. Bialecki, R. Nahlik and M. Lapkowski, Electrochim.
Acta 29 (1984) 905.

[3] J. Deconinck, G. Maggetto and J. Vereecken, J. Electro-
chem. Soc. 132 (1985) 2960.

[4] H. Kawamoto, J. Appl. Electrochem. 22 (1992) 1113.
[5] K. Bouzek, K. Borve, O. A. Lorentsen, K. Osmundsen,

I. Rousar and J. Thonstad, J. Electrochem. Soc. 142
(1995) 64.

[6] L. Martens and K. Hertwig, Electrochim. Acta 40 (1995)
387.

[7] B. Ste�en and I. Rousar, ibid. 40 (1995) 379.
[8] R. P. Buck, J. Electroanal. Chem. 271 (1981) 1.
[9] A. V. Sokirko, ibid. 364 (1994) 51.
[10] A. Katagiri, J. Appl. Electrochem. 21 (1991) 487.
[11] Y. I. Kharkats, A. V. Sokirko and F. H. Bark, Electrochim.

Acta 40 (1995) 247.
[12] J. M. Bisang, J. Appl. Electrochem. 23 (1993) 966.
[13] L. Bortels and J. Deconinck, A new approach for solving

mass and charge transport in electrochemical systems.
Third European Symposium on Electrochemical Engi-
neering, Nancy, France (1994).

[14] M. Georgiadou and R. Alkire, J. Electrochem. Soc. 141
(1994) 679.

[15] Z. H. Qiu, L. C. Wrobel and H. Power, Enggn. Anal.
Boundary elements 15 (1995) 299.

[16] C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, `Boundary
Element Techniques: Theory and Applications in Engi-
neering', Springer-Verlag, Berlin (1984).

[17] J. Deconinck and L. Bortels, Final Project Report, Brite±
Euram project BE-5187 (1995).

[18] J. P. S. Azevedo and L. C. Wrobel, Int. J. Numer. Methods
Eng. 26 (1988) 19.

[19] M. S. Longuet-Higgins and E. D. Cokelet, Proc. R. Soc.
Lond. A350 (1976) 1.

Fig. 13. Comparison between numerical and analytical results
for current density �Re � 55�. BEM results (Ð±±); analytical re-
sults (± ± ±).

Fig. 14. Comparison between numerical and analytical results
for current density �Re � 180�. BEM results (±Ð±); analytical
results (± ± ±).

1342 Z. H. QIU, L. C. WROBEL AND H. POWER


	Abstract
	Introduction
	Governing equations
	Numerical formulation
	Applications
	Conclusions
	Acknowledgements
	References

